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Abstract. The exact amplitude for the asymptotic correlation function in theS = 1
2 Heisenberg

antiferromagnetic chain is determined:
〈Sa0Sbr 〉 → (−1)r δab(ln r)1/2/[(2π)3/2r].

The behaviour of the correlation functions for smallxxz anisotropy and the form of finite-size
corrections to the correlation function are also analysed.

The asymptotic behaviour of the equal-time correlation function in the Heisenberg
antiferromagnetic chain has been difficult to determine numerically [1–6] because of the
presence of a marginally irrelevant operator. This leads [7, 8] to a logarithmic factor of√

ln r and also to finite-size effects which only vanish as 1/ lnL whereL is the system
size. This marginal operator leads to logarithmic corrections, sometimes multiplicative and
sometimes additive, to most long distance, low-energy properties of the model. In particular,
recent experiments on Sr2CuO3 found evidence for the predicted [9] logarithmic additive
correction to the susceptibility [10].

On the other hand, logarithmic corrections are absent from thexxz model, with the
Hamiltonian:

H =
∑
i

[(Sxi S
x
i+1+ Syi Syi+1+ γ Szi Szi+1] (1)

for γ 6= 1. The model exhibits critical behaviour for−1 6 γ 6 1, with asympotic
correlation functions:

Gx(r) ≡ 〈Sx0Sxr 〉 → (−1)rAxr
−η

Gz(r) ≡ 〈Sz0Szr 〉 → (−1)rAzr
−1/η

(2)

with

η = 1− [cos−1 γ ]/π (06 η 6 1). (3)

What appears to be an exact formula for the amplitudeAx(γ ) was recently conjectured
[11]:

Ax(γ ) = (1+ ξ)2
8

[
0(

ξ

2)

2
√
π0( 1

2 + ξ

2)

]η
exp

{
−
∫ ∞

0

dt

t

(
sinh(ηt)

sinh(t) cosh[(1− η)t ] − ηe−2t

)}
.

(4)
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Here:

ξ ≡ η

1− η . (5)

The main purpose of this paper is to determine the exact amplitude in the logarithmic,
xxx case,γ = 1, giving the result in the abstract. To do so it will be neccessary to consider
the form of these correlation functions forγ only slightly less than 1 where a crossover
from logarithmic to non-logarithimic behaviour occurs. The other amplitude,Az, is not
generally known. We will show that

lim
γ→1−

Az/Ax = 4. (6)

The order of limits here is crucial; right atγ = 1 the amplitudes of the (logarithmic)
correlation functionsGx andGz are equal. We also discuss the form of finite-size corrections
for the correlation function on a ring of lengthL with periodic boundary conditions,G(r, L).

The subsequent calculations are based on the continuum limit bosonized approximation
to thexxz model. We follow the notation of [7]. The Hamiltonian density may be written

H = H0− (8π2/
√

3)[gx(J xLJ
x
R + J yLJ yR)+ gz(J zLJ zR)]. (7)

HereH0 is the Hamiltonian density for a free boson, of compactification radiusR = 1/
√

2π ,
or equivalently, the SU(2) level 1 Wess–Zumino–Witten (WZW) nonlinearσ model. JL,R
are the left- and right-moving currents. (We set the spin-wave velocity equal to 1.) For the
isotropic model, withγ = 1, gx = gz = g is of O(1). The rather cumbersome normalization
in equation (7) is dictated by the convention that the operators multiplyingg in the isotropic
case have a correlation function with unit amplitude. For thexxz model withγ close to 1,

gz − gx ∝ 1− γ. (8)

These coupling constants obey the Kosterlitz–Thouless renormalization group (RG)
equations:

βz ≡ dgz/d lnL = −(4π/
√

3)g2
x

βx ≡ dgx/d lnL = −(4π/
√

3)gxgz.
(9)

The RG trajectories are sketched in figure 1.g2
z (L) − g2

x(L) is an RG invariant along the
flow. Forgz > |gx |, the flow is to a fixed line, the positivegz axis. g2

z (L)−g2
x(L) = g2

z (∞)
along these trajectories. Using the Abelian bosonization formulaJ zL = −(1/

√
8π)(∂0+∂1)φ,

we find that, at the fixed point, the effective Lagrangian is

L = 1
2(∂µφ)

2[1− (2πgz(∞)/
√

3]. (10)

The staggered part of the local spin operators may be written in non-Abelian bosonization
notation as:

Si ∝ (−1)i tr gσ (11)

whereg is the two-dimensional unitary matrix field of the WZW model. In terms of Abelian
bosonization:

Szi ∝ (−1)i sin(φ/R)

Sxi ∝ (−1)i cos(2πRφ̃)
(12)

where φ̃ denotes the dual field andR = 1/
√

2π . From equations (10) and (12) we can
determine the correlation exponents of equation (2) with

η = 1− 2πgz(∞)/
√

3. (13)
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Figure 1. The Kosterlitz–Thouless RG flows of equation (9).

Note that, using equation (3), determined from the Bethe ansatz solution, the value ofgz(∞)
is determined exactly. The scaling dimensions of the staggered spin operators trgσx and
tr gσ z are given byη/2 and1

2η respectively. In order to study the logarithmic behaviour, we
will also need the anomalous dimensions for small non-zerogi , along the RG trajectories.
These can be determined from the three-point Green functions〈tr gσaJ bLJ bR tr gσa〉 as in [7].
Using the fact that the operator product expansion gives:

J bL(z)J
b
R(z̄)g(z

′, z̄′)→
1
4σ

bgσ b

|2π(z− z′)|2 + · · · (14)

we conclude that:

〈tr gσaJ bLJ bR tr gσa〉 ∝ tr(σ aσ bσ aσ b) = 4δab − 2. (15)

Thus, to linear order, the conclusion is:

γx = 1
2 − (π/

√
3)gz

γz = 1
2 + (π/

√
3)(gz − 2gx).

(16)

In discussing the asymptotic correlation functions, using bosonization, it is convenient to
introduce uniform and staggered terms:

Gi(r)→ Gi
u(r)+ (−1)rGi

s(r) (17)

whereGi
u andGi

s vary slowly on the scale of a lattice spacing. These two terms correspond
to different Green functions in the continuum limit field theory. In this paper we only
discuss the staggered term.

The staggered correlation functions (for an infinite spin chain) obey the RG equations:[
∂/∂ ln r +

∑
j

βj (g)∂/∂gj + 2γi(g)

]
Gi
s(r, g) = 0. (18)
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Hereg ≡ (gz, gx). This follows from the fact that a rescaling of the length is equivalent
to a change in the value of the effective coupling constant together with a rescaling of the
fields with exponentsγi . The solution is

Gi
s(r, g

0) ∝ exp

{
− 2

∫ r

r0

d lnr ′ γi [g(r ′)]
}
Fi [g(r)] (19)

whereg(r) is the solution of the RG equations,

dgi/d lnr = βi(g). (20)

Hereg0 ≡ g(r0), denotes the value of the ‘bare’ couplings at some reference ‘ultraviolet
cut-off’ scale r0 of order of a lattice spacing. Since, for large r,gx(r) � 1, we may
expand the functionsFi [g(r)] perturbatively ingx(r). This procedure is used to analyse
deep inelastic scattering data in quantum chromodynamics. It is known as ‘renormalization
group improved perturbation theory’. To lowest order these functions are just constants.
Integrating the RG equations for the effective coupling constants, equation (9), we obtain

gx(r) =
√

3ε

4π
cosech(ε ln r)

gz(r) =
√

3ε

4π
coth(ε ln r)

(21)

where we have defined

ε ≡ 2(1− η) = 4πgz(∞)/
√

3. (22)

Now performing the integration overγi(ln r) in equation (19), we obtain

Gx
s (r)→

Ax

r1−ε/2 (1− r−2ε)1/2

Gz
s(r)→

Az

r1+ε/2
(1− r−ε)1/2
(1+ r−ε)3/2 .

(23)

Note that we have defined the normalization constants so that the asympotic large-r

behaviour is as in equation (2). Also note that, forε � 1, both correlation functions
exhibit logarithimic behaviour over an intermediate range ofr, 1 � ln r � 1/ε. In this
range ofr, we obtain

Gx
s ≈
√

2εAx
(ln r)1/2

r

Gz
s(r) ≈

√
εAz

23/2

(ln r)1/2

r
.

(24)

Now consider taking the limitε → 0, corresponding to the isotropic Heisenberg
antiferromagnet. Note that in order for the correlation functions to remain finite at fixed
r as ε → 0 we must haveAx ∝ 1/

√
ε. Furthermore, in order to obtain the isotropic

result,Gx
s (r) = Gz

s(r), we must haveAz/Ax → 4, asε → 0. Thus for small but finite
ε, Gx

s (r) ≈ Gz
s(r) in the intermediate range ofr, but at very larger they exhibit slightly

different exponents and amplitudes differing by a factor of 4.
The exact amplitude,Ax(η) of equation (4) can be evaluated in closed form in the limit

η → 1, ε → 0. In this limit we may approximate sinhηt/ sinht ≈ e−εt/2 in the first term
of the integrand andη ≈ 1 in the second term. The integral can then be calculated exactly,
to obtain

Ax → 1

4(ε)1/2π3/2
. (25)
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This diverges as 1/
√
ε, as expected. Thus we conclude, in the isotropic case,

Gz
s(r) = Gx

s (r)→
1

(2π)3/2
(ln r)1/2

r
. (26)

The asymptotic form of the Fourier transform fork ≈ π is thus given by

G(k) ≡
∞∑

r=−∞
G(r)eikr → 4

3(2π)3/2
| ln |k − π ||3/2. (27)

Note that the effect of the(ln r)1/2 factor is to change the power of| ln |k − π || from 1 to
3
2. If such a weak singularity could be observed, this formula might be useful to check the
normalization in neutron scattering experiments. It follows from the above analysis that,
for small xxz anisotropy, this isotropic formula remains valid down to exponentially small
values ofk − π , making the log singularity of equation (27) observable.

Several efforts have been made to check the field theory prediction of logarithmic
behaviour numerically [1–6]. Hallberget al [4] obtained the above asympototic behaviour
but with an amplitude of 0.067 89 in place of the exact result(2π)−3/2 = 0.063 493 64. . ..
This result was obtained from density matrix renormalization group calculations on rings
of up to 70 sites using finite-size extrapolation. Koma and Mizukoshi [5] also obtained the
above form with an amplitude of 0.065. (Alternatively, if they let the power of the logarithm
be a free parameter they obtained a slightly better fit with a power of 0.47 instead of1

2 and
an amplitude of 0.071.) This was obtained using exact diagonalization results forL 6 30
and zero temperature quantum Monte Carlo for 326 L 6 80. The agreement is remarkably
good considering the severe difficulties of the extrapolation due to the logarithmic nature
of the corrections. In the remainder of this report we consider the nature of the corrections
to this formula, for the Heisenberg antiferromagnet.

Let us begin withGs(r) for an infinite system. The integral in the exponent in
equation (19) can be rewritten as∫ g(r)

g0

[γ (g)/β(g)] dg = 1

2
ln(r/r0)+

∫ g(r)

g0

[
1

4g
+
∞∑
n=1

ang
n

]
= 1

2
ln(r/r0)+ 1

4
ln[g(r)/g0] +

∞∑
n=0

an

n+ 1
[g(r)n+1− gn+1

0 ]. (28)

Here thean terms arise from the higher-order terms in the perturbative expansions ofβ(g)

andγ (g). Noting that all terms involvingg0 are just constants, and also Taylor expanding
the functionF [g(r)] in equation (19), we may finally write

Gs(r)→ (−1)r

r
√
g(r)

∞∑
n=0

bng
n(r) (29)

in terms of some combined coefficients,bn. Including the cubic term in theβ-function for
the isotropic case [12]:

dg/d lnr = −(4π/
√

3)g2− 1
2(4π/

√
3)2g3. (30)

Integrating gives

1

g(r)
− 1

g0
= (4π/

√
3){ln(r/r0)+ 1

2 ln[ln(r/r0)]} +O(1). (31)

Thus, we may write

Gs(r) = (−1)r

(2π)3/2
{ln(r/r0)+ 1

2 ln[ln(r/r0)]}1/2
r

[1+O(1/ ln r)]. (32)
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We may absorb the leading correction into a constant term inside the square root:

Gs(r) = (−1)r

(2π)3/2
{ln(Cr/r0)+ 1

2 ln[ln(r/r0)]}1/2
r

{1+O[1/(ln r)2]}. (33)

From equation (31),C has the form

C = e
√

3/4πg0+O(1). (34)

The O(1) term in the exponent in equation (34) could be computed. It requires calculation
of the anomalous dimensionγ (g) to O(g2) and of the functionF to O(g). This term was
ignored in [4] leading to an inaccurate determination ofg0.

Let us now consider the Green’s function on a ring of lengthL, Gs(r, L, g). The RG
equation, equation (18), is still obeyed. The derivative in this equation may be taken either
with respect tor or L with the ratior/L held fixed. This follows because a rescaling of
both length scales is equivalent to a coupling constant redefinition. Using anL-derivative,
the solution is now:

Gs(r, L, g
0) = exp{−2

∫ L

r0

d lnr ′ γ [g(r ′)]}F [g(L), r/L]. (35)

The exponential factor is independent ofr. The functionF [g(L), r/L] may be expanded
perturbatively ing(L) for largeL:

F [g(L), r/L] =
∞∑
n=0

g(L)nFn(r/L). (36)

The various functionsFn(r/L) can be calculated by doing perturbation theory in the system
with finite length. They should all obey the periodicity requirement:

Fn[r/L] = Fn[(L− r)/L]. (37)

If we take the asymptotic limitr/L → 0, we should recover the infiniteL result of
equation (33). The zeroth-order term,F0(r/L) is obtained by ignoring the marginal
interaction altogether and simply calculating:

〈tr(σg)(r) · tr(σg)(0)〉L (38)

in the conformally invariant WZW model, on a circle of lengthL. The correlation function
on the circle (i.e. the cylinder in the spacetime picture) is simply obtained by a conformal
transformation and is given by:

〈tr(σg)(r) · tr(σg)(0)〉L ∝ 1

L sin(πr/L)
. (39)

Thus we may write:

Gs(r, L)→ 1

(2π)3/2
{ln(L/r0)+ 1

2 ln[ln(L/r0)]}1/2
(L/π) sin(πr/L)

[
1+ 1

ln(L/r0)
F̃1(r/L)+ · · ·

]
(40)

for some other scaling function,̃F1. Alternatively, solving the RG equation with anr-
derivative, we obtain this result withL replaced byr inside all logarithms and a different
scaling functionF ′1(r/L). (Note that, takingr � r0 with r/L held fixed, the difference
between

√
ln(r/r0) and

√
ln(L/r0) is suppressed by a factor of 1/ ln(r/r0).)

For the generalxxz model the leading-order finite-size scaling result is again obtained
by the simple replacement:

r → (L/π) sin(πr/L). (41)
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Figure 2. Comparison of the two different scaling functions for thexx model.

Figure 3. Comparison of the two different scaling functions for thexxx model.

In particular, forGx
s in the xx model (γ = 0) we obtain:

Gx
s ∝ [sin(πr/L)]−1/2. (42)

The corrections are down by powers of 1/r rather than only logarithms.
The efforts to fit numerical results on correlation functions inS = 1

2 antiferromagets to
a finite-size scaling form have a rather curious history. The case ofGx

s for the xx model
was considered in [1]. Rather than using the result predicted by conformal invariance the
authors adopted a phenomenological expression, with free parameters adjusted to obtain
good data collapse, corresponding to the replacement:( πx

sinπx

)1/2
→ 1+ 0.288 22 sinh2(1.673x) (43)

for x ≡ r/L. This leads to a correlation function not obeying the periodicity condition:

Gs(r, L) = Gs(L− r, L). (44)

Thus, the data fitting was only done for 0< x < 1
2. Over this range, these two functions

actually agree to within about 0.05% as indicated in figure 2. This indicates that the
conformal field theory (CFT) prediction is extremely accurate for thexx model. It was
proposed in [1] that, in the generalxxz model, one should use the form

[1+ 0.288 22 sinh2(1.673x)]2η (45)
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for Gx
s . This is essentially the correct CFT prediction, due to the numerical agreement noted

above. However, in [4] the exponent in equation (45) was taken to be a free parameter.
For the Heisenberg model a best fit was obtained with the exponent 1.805 rather than the
correct value of 2. Thus the scaling form used differed slightly from the one predicted by
CFT as shown in figure 3. The maximum disagreement, atx = 0.5, is about 4%.

Koma and Mizukoshi used the scaling function

Gs(r, L)→ A{ln[(L/πr0) sin(πr/L)]}1/2
(L/π) sin(πr L)

(46)

obtaining a best fit forA ≈ 0.065 (close to(2π)−3/2 ≈ 0.0635). The agreement between
this formula and their numerical data is better than 1.26% for 16 r 6 L/2 and 46 L 6 80.
Taylor expanding in 1/ ln(L/r0), we see that this expression is consistent with equation (40)
for a particular choice of the functioñF1, up to the small discrepancy in the amplitude.
Equation (46) has the great advantage of simultaneously having the correct periodicity
property and the correct behaviour in the limitL→∞. However, such an expression can
only arise from equation (35) by summing an infinite number of terms in equation (36) (and
ignoring the ln[ln(L/r0)] terms ing(L)).

We expect that the somewhat larger discrepancy with CFT for the Heisenberg model
than for thexx model can be accounted for by the log corrections. The range ofr used in the
numerical work of Hallberget al [4] for which fairly good data collapse was obtained was
only 10< r < 30. In this range we might expect the factor 1/ ln(r/r0) in equation (40)
(written with r replaced byL inside the logarithms) to be fairly constant. Thus theF ′1
term acts essentially as a small correction to the scaling function,πx/ sin(πx). (A related
observation was made in [5].) It is feasible to push this renormalization group improved
perturbation theory to one higher order and calculateF̃1(r/L) in equation (40). This involves
using the known result for theβ-function to 0(g3), calculating the anomalous dimension
to 0(g2) and calculating the Green’s function on a finite strip to 0(g). We expect that this
could give better agreement with the numerical results and could, in particular, reduce the
small discrepancy between the exact amplitude and the results of [4, 5].
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